LIQUID FLOW CV EQUATION •

$$C_V = \begin{array}{cc} \frac{Q\sqrt{G}}{\sqrt{\Delta P}} \end{array}$$

This equation applied to all liquids including cryogenic liquids.

LEGEND

C_v - Flow coefficient

Q - Flow in GPM

 ΔP - Differential Pressure (Difference between inlet and outlet pressure) in PSI.

G - Specific Gravity (Taken from Properties of Liquids)

EXAMPLE

GIVEN: Flow - 20 GPM of Water

Inlet pressure - 100 PSIG Outlet pressure - 95 PSIG

FIND THE C_v REQUIRED.

SOLUTION

Q = 20 GPM

Inlet pressure = 100 PSI

Outlet pressure = 95

 $\Delta P = 5 PSI$

Media = Water

Specific Gravity of Water = 1.0

$$C_V = \frac{Q\sqrt{G}}{\sqrt{\Delta P}} = \frac{20\sqrt{1.0}}{\sqrt{5}}$$

$$C_V = 20 \times 1 = 8.9$$

2.24

NOTE

1 GALLON OF WATER EQUALS 8.336 LBS.

1 LB. OF WATER EQUALS .1198 GALLONS

GAS FLOW C_v EQUATION _____ SUBSONIC FLOW

DEFINITION

Flow is subsonic when the ΔP (differential pressure) is less than 1/2 of the inlet pressure.

$$C_{V} = \underbrace{Q \sqrt{G}}_{V}$$

$$V = \underbrace{Q \sqrt{G}}_{Q}$$

LEGEND

C_v - Flow coefficient

Q - Flow in SCFM

 ΔP - Differential Pressure (Difference between inlet and outlet pressure) in PSI.

G - Specific gravity of Media (Taken from Properties of Gases)

P₁ - Inlet pressure in PSIA (PSIG + 14.7)

P₂ - Outlet pressure in PSIA (PSIG + 14.7)

EXAMPLE

GIVEN: Flow - 100 SCFM of N2

Inlet Pressure - 100 PSIG Outlet Pressure - 75 PSIG

FIND THE C_v REQUIRED.

SOLUTION

 $Q = 100 SCFM N_2$

Inlet Pressure = 100 PSIG

P₁ = 100 PSIG + 14.7 = 114.7 PSIA

Outlet Pressure = 75 PSIG

 $P_2 = 75 \text{ PSIG} + 14.7 = 89.7 \text{ PSIA}$

 $\Delta P = P_1 - P_2 = 114.7 \text{ PSIA} - 89.7 \text{ PSIA}$

 $\Delta P = 25 PSI$

 $Media = N_2$

Specific Gravity of $N_2 = 0.067$

$$C_{v} = \underbrace{Q \ \sqrt{G}}_{\sqrt{P_{2} \, \Delta P}}$$

$$C_{V} = \frac{100\sqrt{0.967}}{\sqrt{89.7 \times 25}}$$

$$C_V = \frac{100 \times 0.983}{\sqrt{2242}} = \frac{98.33}{47.4}$$

$$C_V = 2.07$$

GAS FLOW C_v EQUATION SONIC FLOW

DEFINITION

Flow is sonic when the ΔP (Differential Pressure) is equal to or greater than 1/2 of the inlet pressure.

$$C_V = \frac{Q\sqrt{G}}{P_1/2}$$

LEGEND

C_v - Flow coefficient.

Q - Flow in SCFM.

 ΔP - Differential Pressure (Difference between inlet and outlet pressure) in PSI.

G - Specific Gravity of Media. (Taken from Properties of Gases)

P₁ - Inlet Pressure in PSIA. (PSIG + 14.7)

P₂ - Outlet Pressure in PSIA. (PSIG + 14.7)

EXAMPLE

GIVEN: Flow = 100 SCFM of N_2

Inlet Pressure = 100 PSIG Outlet Pressure = 25 PSIG

FIND THE C_v REQUIRED.

SOLUTION

 $Q = 100 SCFM of N_2$

Inlet Pressure = 100 PSIG

 $P_1 = 100 PSIG + 14.7 = 114.7 PSIA$

Outlet Pressure = 25 PSIG

 $P_2 = 25 \text{ PSIG} + 14.7 = 39.7 \text{ PSIA}$

 $\Delta P = P_1 - P_2 = 114.7 - 39.7 = 75 PSI$

Media - N₂

Specific Gravity of $N_2 = 0.967$

$$C_V = Q\sqrt{G} = 100\sqrt{0.967} = 100 \times 0.9533$$

 $P_1/2 = 114.7/2 = 57.35$

$$C_V = 1.7$$